Introduction to Verification and Validation

William L. Oberkampf

Consultant

wloconsulting@gmail.com

Austin, Texas

Institute for Computing in Science
Verification, Validation and Uncertainty Quantification Across Disciplines
Park City, Utah
August 6-13, 2011

Outline

- Goals of verification and validation
- Terminology
- Code verification
- Solution verification
- Aspects of validation
- Validation experiment hierarchy
- Concluding remarks

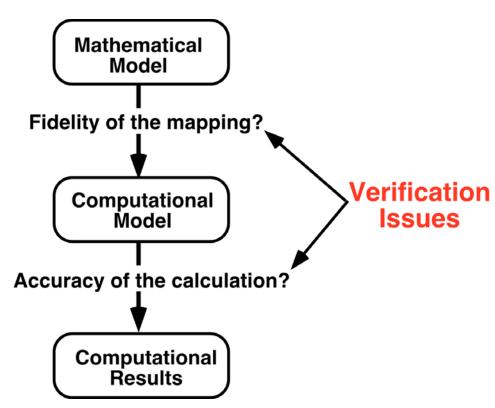
Goals of Verification and Validation

- Verification and validation are the technical tools (processes) by which simulation credibility is quantified
- Verification is the process of gathering evidence concerning the correctness of the computer code and accuracy of the numerical solution to the given mathematical model of the physics
- Validation is the process of gathering evidence concerning the accuracy and capability of the mathematical model to simulate the physics of interest
- Adequacy of verification and validation depends on:
 - Individual's view of adequate credibility
 - Consequence of the decision based on simulation

Formal Definition of Verification (DoD, AIAA, ASME)

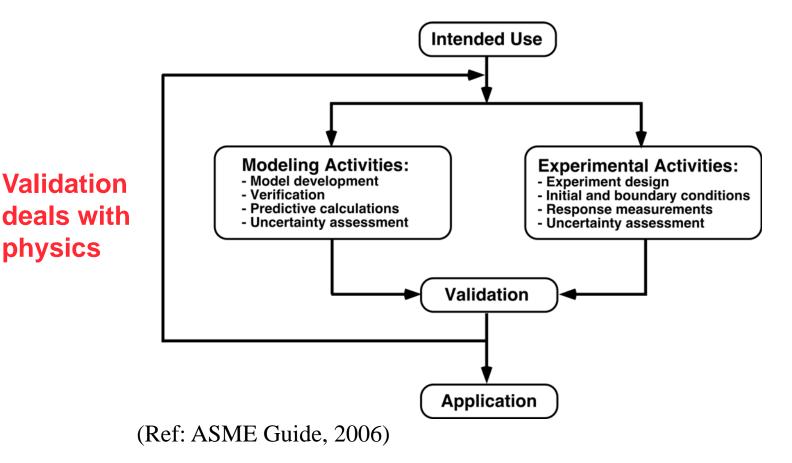
Verification: The process of determining that a computational model accurately represents the underlying mathematical model and its solution

Verification deals with mathematics and software engineering



Formal Definition of Validation (DoD, AIAA, ASME)

Validation: The process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model



Calibration

 When assessed accuracy of a computational result is not adequate or improved agreement is desired, then calibration is appropriate

Calibration: The process of adjusting physical modeling parameters in the computational model to improve agreement with experimental data

- Also known as: parameter estimation, model tuning, model updating
 Calibration is a <u>response</u> to the assessment of model accuracy directed toward improvement of agreement with experimental data
- Calibration is critically important in many situations:
 - Calibration is commonly conducted before formal validation activities
 - Calibration of model parameters when parameters cannot be measured independently from the model

Two Types of Verification

- Verification is divided into two processes:
- Code Verification: Verification activities directed toward:
 - Finding and removing mistakes in the source code
 - Finding and removing errors in numerical algorithms
 - Improving software using software quality assurance practices
- Solution Verification: Verification activities directed toward:
 - Assuring the accuracy of input data for the problem of interest
 - Estimating the numerical solution error
 - Assuring the accuracy of output data for the problem of interest

Code Verification Processes

- Good software engineering practices (version control, regression testing, etc.)
- Code order of accuracy testing
 - Demonstrate that the discretization error $\varepsilon_h = u_h \widetilde{u}$ reduces at proper rate with systematic mesh refinement:

$$p = \frac{\ln(\varepsilon_{rh}/\varepsilon_h)}{\ln(r)}$$

- Systematic refinement requires uniform refinement over the entire domain and in all independent variables of the PDE
- This approach also requires an exact solution to the mathematical model

Code Verification: Exact Solutions

Two main approaches for obtaining exact solutions to the mathematical model

- Traditional exact solutions given a properly posed PDE and initial / boundary conditions, find the solution
 - Exist only for simple models
 - Do not exercise the code in a general sense
- Method of Manufactured Solutions (MMS)
 - Given a PDE L(u) = 0
 - Find the modified PDE which the solution satisfies
 - Choose an analytic solution, \hat{u} , e.g., sinusoidal functions
 - Operate PDE onto the solution to give the source term: $L(\hat{u}) = s$
 - New PDE L(u) = s is then numerically solved to get u_h
 - Discretization error can be evaluated as: $\varepsilon_h = u_h \hat{u}$

Example of MMS with Order Verification: 2D Euler Equations

2D steady-state Euler equations:

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = f_m$$

$$\frac{\partial(\rho u^2 + p)}{\partial x} + \frac{\partial(\rho u v)}{\partial y} = f_x$$

$$\frac{\partial(\rho u v)}{\partial x} + \frac{\partial(\rho v^2 + p)}{\partial y} = f_y$$

$$\frac{\partial(\rho u e_t + p u)}{\partial x} + \frac{\partial(\rho v e_t + p v)}{\partial y} = f_e$$

$$p = \rho RT, \ e_t = \frac{1}{\gamma - 1} RT + \frac{u^2 + v^2}{2}$$

Example of MMS with Order Verification: 2D Euler Equations (contd)

Choose the form of the manufactured solution:

$$\rho(x,y) = \rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_y \cos\left(\frac{a_{\rho y}\pi y}{L}\right)$$

$$u(x,y) = u_0 + u_x \sin\left(\frac{a_{ux}\pi x}{L}\right) + u_y \cos\left(\frac{a_{uy}\pi y}{L}\right)$$

$$v(x,y) = v_0 + v_x \cos\left(\frac{a_{vx}\pi x}{L}\right) + v_y \sin\left(\frac{a_{vy}\pi y}{L}\right)$$

$$p(x,y) = p_0 + p_x \cos\left(\frac{a_{px}\pi x}{L}\right) + p_y \sin\left(\frac{a_{py}\pi y}{L}\right)$$

Example of MMS with Order Verification: 2D Euler Equations (contd)

Substitute the manufactured solution into the governing equations to analytically derive the source terms

- Use symbolic manipulation tools, e.g., MatLab and Mathematica
- E.g., the source term for the mass conservation equation is:

$$f_{m} = \frac{a_{ux}\pi u_{x}}{L}\cos\left(\frac{a_{ux}\pi x}{L}\right)\left[\rho_{0} + \rho_{x}\sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_{y}\cos\left(\frac{a_{\rho y}\pi y}{L}\right)\right]$$

$$+ \frac{a_{vy}\pi v_{y}}{L}\cos\left(\frac{a_{vy}\pi y}{L}\right)\left[\rho_{0} + \rho_{x}\sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_{y}\cos\left(\frac{a_{\rho y}\pi y}{L}\right)\right]$$

$$+ \frac{a_{\rho x}\pi \rho_{x}}{L}\cos\left(\frac{a_{\rho x}\pi x}{L}\right)\left[u_{0} + u_{x}\sin\left(\frac{a_{ux}\pi x}{L}\right) + u_{y}\cos\left(\frac{a_{uy}\pi y}{L}\right)\right]$$

$$+ \frac{a_{\rho y}\pi \rho_{y}}{L}\sin\left(\frac{a_{\rho y}\pi y}{L}\right)\left[v_{0} + v_{x}\cos\left(\frac{a_{vx}\pi x}{L}\right) + v_{y}\sin\left(\frac{a_{vy}\pi y}{L}\right)\right]$$

Example of MMS with Order Verification: 2D Euler Equations (contd)

Discretize and solve on multiple meshes (uniform)

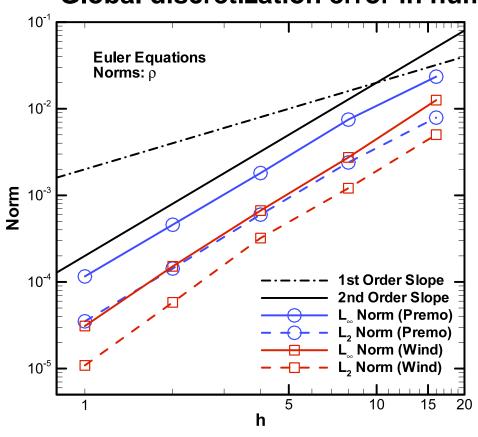
Mesh Name	Mesh Nodes	Grid Spacing, <i>h</i>
Mesh 1	129 x 129	1
Mesh 2	65 x 65	2
Mesh 3	33 x 33	4
Mesh 4	17 x 17	8
Mesh 5	9 x 9	16

- Coarser meshes found by eliminating every other grid line in each direction from the fine mesh (r = 2)
- Grid spacing is normalized by the fine mesh spacing

$$h_k = \frac{\Delta_k}{\Delta_1}, \quad \Delta = \Delta x = \Delta y$$

Example of MMS with Order Verification: 2D Euler Equations (contd)

Global discretization error in numerical solutions



L_∞ Norm:

$$\|\boldsymbol{\varepsilon}_h\|_{\infty} = \max |u_n - \widetilde{u}_n|$$

L₂ Norm:
$$\left\|\varepsilon_{h}\right\|_{2} = \left(\frac{1}{N}\sum_{n=1}^{N}\left|u_{n}-\widetilde{u}_{n}\right|^{2}\right)^{1/2}$$

- \widetilde{u} from manuf. solution
- *n* = nodes
- Second-order accuracy is demonstrated

Solution Verification

- In code verification, the exact solution to the PDEs was known and used to evaluate the discretization error
- In solution verification, the various sources of numerical error must be *estimated*
 - Round-off error
 - Iterative error
 - Discretization error

Iterative Error

Iterative error can be generally defined as the difference between the current approximate iterative solution and the exact solution to the equations

- It occurs any time an iterative method is used to solve algebraic equations
- For scientific computing:
 - The system of algebraic equations usually arises from the discretization of a mathematical model
 - The exact solution in the above definition is the exact solution to the discrete equations (not the PDEs)

Discretization Error

Discretization Error (DE) is the difference between the exact solution to the discrete equations and the exact solution to the partial differential equations (PDEs)

$$\varepsilon_h = u_h - \widetilde{u}$$

- DE is the numerical approximation error due to the mesh and/or time step used in the numerical scheme
- DE comes from the interplay between the numerical scheme, the mesh resolution, the mesh quality, and the solution behavior

Solution Verification: Classification of DE Estimators

Of the sources of numerical error, discretization error (DE) is usually the largest and most difficult to estimate

- Type 1: DE estimators based on higher-order estimates of the exact solution to the PDEs (post-process the solution)
 - Richardson extrapolation
 - Order refinement methods
 - Finite element recovery methods
- Type 2: Residual-based methods (include additional information about problem being solved)
 - DE transport equations
 - Finite element residual methods
 - Defect correction methods
 - Adjoint methods for SRQs

Generalized Richardson Extrapolation

• DE expansion for a formally pth order scheme:

$$\varepsilon_h = u_h - \widetilde{u} = g_p h^p + g_{p+1} h^{p+1} + g_{p+2} h^{p+2} + \dots$$

- Uses solutions on two meshes systematically-refined by the factor $r = h_{\rm coarse} / h_{\rm fine}$ where $h_{\rm coarse} = rh_{\rm fine} = rh$
- Assuming H.O.T. are small, an estimate of the exact solution is given by:

$$\overline{u} = u_h + \frac{u_h - u_{rh}}{r^p - 1}$$

• \overline{u} can be used to provide the DE estimate

$$\overline{\varepsilon}_h = u_h - \overline{u}$$

Richardson Extrapolation (cont'd)

Advantages

- Can be applied as a post-processing step
- Independent of the type of numerical scheme (finite difference, finite volume, finite element)
- Applies to dependent variables and any global quantities

Disadvantages

- Requires solutions on two systematically-refined mesh levels
- Both numerical solutions must be asymptotic for the error estimates to be reliable

All solution error estimates require the solution to be asymptotic

Goals of Validation

Tactical goal of validation: Identification and quantification of uncertainties and errors in the computational model and in the experimental measurements

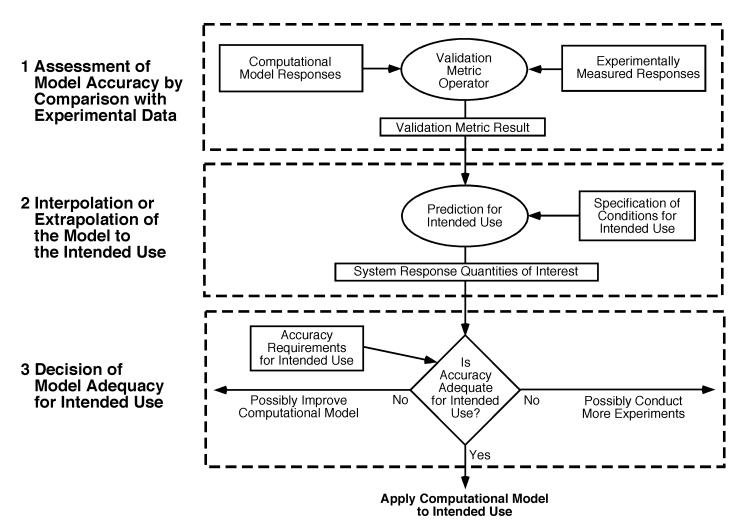
Strategic goal of validation: Increase confidence in the quantitative predictive capability of the computational model

Strategy: Reduce as much as possible

- Computational model uncertainties and errors
- Random (precision) errors and bias (systematic) errors in the experiment
- Incomplete physical characterization of the experiment

Code and solution verification should be performed before validation activities to be meaningful

Three Aspects of Validation and Prediction



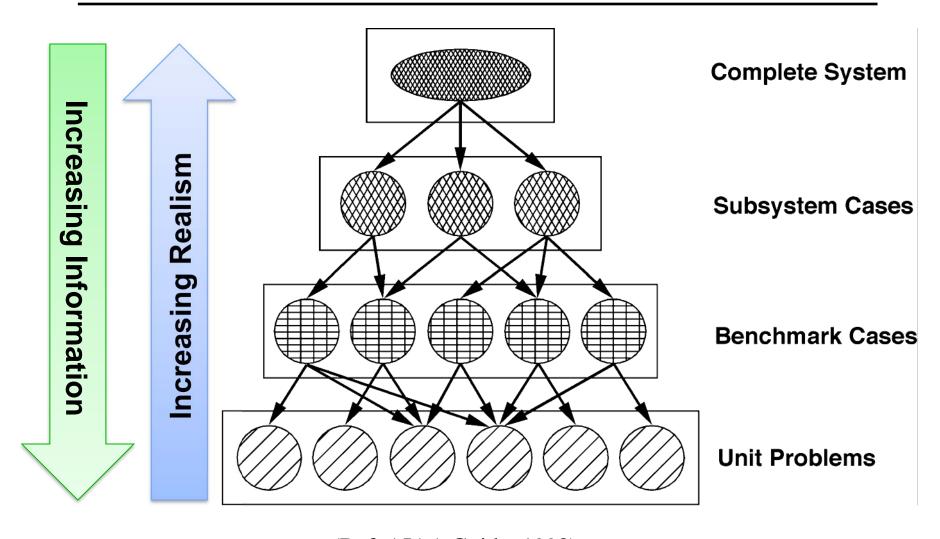
(Ref: Oberkampf and Trucano, 2008)

Traditional Experiments vs. Validation Experiments

Three types of traditional experiments:

- 1. Improve the fundamental understanding of the physics:
 - Ex: Fluid dynamic turbulence experiment; experiment for understanding the decomposition of a thermal protection material
- 2. Improve the mathematical models of some physical phenomena:
 - Ex: Model calibration experiment for detonation chemistry; model calibration experiment for crack propagation in materials
- 3. Assess subsystem or complete system performance:
 - Ex: Performance of a rocket engine turbopump; performance of a solidfueled rocket motor
- Model validation experiment
 - An experiment that is designed and executed to quantitatively estimate a mathematical model's ability to simulate a physical system or process.
- The computational model developer or code user is the customer.

Validation Experiment Hierarchy



(Ref: AIAA Guide, 1998)

Concluding Remarks

- Traditional software quality practices are helpful, but they have been shown to be ineffective in eliminating programming errors (Hatton, 1997)
- The Method of Manufactured Solutions has proven to be very effective, but more solutions are needed in various fields
- Obtaining convergence in the asymptotic region has proven to be difficult, especially on complex problems
- How much code and solution verification is enough?
- Calibration and validation of models have different goals
- Experience has shown that even at lower levels in the validation hierarchy, models do not agree well with data

References

- AIAA (1998), "Guide for the Verification and Validation of Computational Fluid Dynamics Simulations," American Institute of Aeronautics and Astronautics, AIAA-G-077-1998.
- Anderson, M. G. and P. D. Bates, eds, (2001), <u>Model Validation: Perspectives in Hydrological Science</u>, Wiley, New York.
- ASME (2006), "Guide for Verification and Validation in Computational Solid Mechanics," American Society of Mechanical Engineers, ASME V&V 10-2006.
- Ayyub, B. M. and G. J. Klir (2006), <u>Uncertainty Modeling and Analysis in Engineering and the Sciences</u>, Chapman & Hall/CRC, Boca Raton, FL.
- Cullen, A. C. and H. C. Frey (1999), <u>Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs</u>, Plenum Press, New York.
- DoD (1994), DoD Directive No. 5000.59: Modeling and Simulation (M&S) Management,
 Department of Defense Modeling and Simulation Coordination Office, www.msco.mil
- DoD (2000), Verification, Validation, and Accreditation (VV&A) Recommended Practices Guide, Department of Defense Modeling and Simulation Coordination Office, www.msco.mil
- Hatton, L. (1997). "The T Experiments: Errors in Scientific Software." *IEEE Computational Science & Engineering. 4(2), 27-38.*
- Oberkampf, W. L. and C. J. Roy (2010), <u>Verification and Validation in Scientific Computing</u>, Cambridge University Press, Cambridge, UK.

References (continued)

- Oberkampf, W. L. and T. G. Trucano (2002), "Verification and Validation in Computational Fluid Dynamics," *Progress in Aerospace Sciences*, Vol. 38, No. 3, 209-272.
- Oberkampf, W. L. and T. G. Trucano (2008), "Verification and Validation Benchmarks," *Nuclear Engineering and Design*, Vol. 238, No. 3, 716-743.
- Roache, P. J. (2009), <u>Fundamentals of Verification and Validation</u>, Hermosa Publishers, Socorro, NM.